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SUMMARY 

This is the second report of a set of two reports 011 the dynamics and control 
of slewing maneuvers of NASA Spacecraft Control Laboratory Experiment 
(SCOLE) article. In this report, the control problem of slewing maneuvers of 
SCOLE is developed in terms of an arbitrary maneuver about any given axis. The 
control system is developed for the combined problem of rigid-body slew 
maneuver and vibration suppression of flexible appendage. The control problem is 
formulated by incorporating the nonlinear equations derived in the previous report 
[11 and is expressed in terms of a two-point boundary value problem utilizing a 
quadratic type of performance index. 

The two-point boundary value problem is solved as a hierarchical control 
problem with the overall system being split in terms of two subsystems, namely 
the slewing of the entire assembly and the vibration suppression of the flexible 
antenna. The coupling variables between the two dynamical subsystems are 
identified and these two subsystems for control purposes are treated independently 
in parallel a t  the first level. Then the state-space trajectory of the combined prob- 
lem is optimized at the second level. 
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1. INTRODUCTION 

The primary control objective of the Spacecraft Control Laboratory Experi- 

ment (SCOLE) is to direct the RF LineOf-Sight (LOS) of the antenna-like 

configuration towards a fixed target under the conditions of minimum time and 

limited control authority [21. This problem of directinF the LOS of antenna- like 

configuration involves both the slewing maneuver of 11 e entire assembly and the 

vibration suppression of the flexible antenna-like bean. The study of ordinary 

rigid-body slew maneuvers has received considerable attention in the literature 

[3,41 due to the fact that any arbitrary largeangle slew maneuver involves 

kinematic nonlinearities. This is further complicated in the case of SCOLE by vir- 

tue of a flexible appendage deployed from the rigid space shuttle. The dynamics of 

arbitrary largeangle slew maneuvers of SCOLE model were derived in the previ- 

ous report 111 as a set of coupled equations with the rigid-body motions including 

the nonlinear kinematics and the vibratory equations of the flexible appendage. 

These nonlinear and coupled dynamical equations are 11::ed in this report to study 

the slew maneuver control in terms of a hierarchical fet*=back control scheme. 

The control problem of slewing maneuvers of this large flexible spacecraft is 

developed by using the two-point boundary value problem in terms of the rigid- 

body slewing and the vibration suppression of the flexible appendage as two 

separate dynamical subsystems. A decentralized optimal control scheme is utilized 

in order to solve individual boundary-value problem for each of the two subsys- 

tems by defining their state variable models and incorporating the coupling vari- 

ables between the two subsystems in these models. Also, the boundary conditions 

of the overall system are reworked in terms of bound:.py conditions of each sub- 

system. A quadratic performance index is utilized for the overall system and is 

subsequently expressed in terms of a sum of two indiviilual performance indices of 

the subsystems. 
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The basic algorithm for obtaining an optimal closed-loop state feedback 

scheme involves using a trajectory in terms of a vector of Lagrange multipliers as 

an initial guess a t  level two. This is used at level one in quasilinearization applica- 

tion. 

The two-point boundary value problem for each s;!bsystem is solved at level 

one by using a quasilinearization technique as a trajectory optimization problem. In 

the quasilinearization procedure, starting from an ini L l  guessed state trajectory, 

successive linearizations are performed of state equations in such a way that the 

final solution of the state trajectory is within an acceptable degree subject to the 

boundary conditions. The state vector definition at  this level is an augmented state 

vector which includes both system states and costates. 

These optimum solutions of the subsystem trajectories are utilized at level 

two to yield the updated trajectory of the vector of Sagrange multipliers of the 

overall system to be used fcr quasilinearization proces a t  level one. The basic 

steps of the algorithm are repeated to optimize this second level trajectory with 

respect to a prespecified error criterion to obtain an  opt^ la1 feedback law. 
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2. LIST OF SYMBOLS 

- a 

B Damping matrix 

- F,(t 1 
(t 

Vector to the point of force application on the bcam 

Force applied at  the reflector mass center 

Moment applied about the orbiter mass center 

Equivalent Mass moment of inertia of total assembly 

Mass moment of inertia matrix of the reflector 

Functional used for two-point boundary value problem 

The stiffness matrix 

The Length of the beam 

Effective moment applied at the reflector c.g. 

The total number of subsystems 

The generalized force vector 

Generalized coordinates 

Position vector from the orbiter mass center to the point of 

x co-ordinate of the reflector mass center in the body-fixed 

y co-ordinate of the reflector mass center in the body-fixed 
f Tame 

Control vector of i th  system 

State vector of i th system 

Vector of interconnecting variables 

Unit vector representing the axis of rotation during the 
slew maneuver 

i th Eigenfunction corresponding to u, 

i th  Eigenfunction corresponding to u,, 

i t h  Eigenfunction corresponding to u+ 

attachment 

frame 
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- e 
s Slew Angle 

The attitude of the orbiter in the inertial franit.: 

0 The angular velocity of the orbiter in the inerixd 
frame 

- R The angular velocity of the reflector in the inertial 
frame 

- E Vector of Euler parameters 

6 (z  -zI ) 

CP (x) 

Direc delta function 

Dual functional for two-point boundary value problem 

- x Vector of Lagrange multipliers 
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3. ANALYTICS 

Slew Maneuver Smcification and Control Variables 

The analytics: for the dynamics of SCOLE developed in reference 111 are used 

to derive the control laws for an arbitrary slew maneuver. It is assumed that the 

slew maneuver is performed by applying moments on the rigid shuttle and the 

vibration suppression is achieved by means of forces :I the flexible antenna and 

the reflector. The slew maneuver is considered to be ail arbitrary maneuver about 

any given axis [ 1 I. 

€1 €4 - E 3  €2 0 
€2 €3 €4 -E1 0 1  

€3 -E2 €1 €4 0 2  

€4 - E l  -E2 - E 3  0 3  

(2) 

The slew maneuver is defined in terms of 3 the axis about which the slew 

is the angular velocity of the maneuver is performed. If 

orbiter in the inertial frame, then the four Euler parameters can be defined as 

is the slew angle and 

h 
2 l = ylsin 

h 
2 

c2 = y2sin 

c3 = y3sin2 k 
L 
2 €4 = cos 

The four Euler parameters can be related to the angular velocity components 

of the rigid assembly as 
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AzT&+ A 2  i- €3.4. + Kg = Q ( t )  

where, 

(4) 

G(t 1 is the net moment applied about the mass center of the orbiter and is 

given by the following equation (figs. 1 & 2) 

G ( t ) = L ( t ) + ( L + e ) x F ,  (5) 

Also, Q(t  represents the generalized force vector whict: is given by the following 

equation 

m 
C ( Q j x l ( t )  + Q j y l ( t ) )  + Q x ,  + Qy, + Qg, 

j =1 
m 
C ( Q j x 2 ( t  Q j y 2 ( t  1) + Q x 2  + Qy2 + Q g 2  

j =1 

... 

... 

... Q(t 1 = 
m 

j =1 gi ( Q j x f ( t )  + Q j y , ( t  )I + Qxi -1 Q Y i  + Q 
... 
... 

where, the generalized force components are given as 

and 

Q j  g f  ( t  = 0 

( 6 )  

(7) 

(8) 

(9) 

Here, Fix (z  ,t is the x component of the concentrated force applied a t  location j 

on th.e flexible antenna and Fly is the y component of that force. 
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Also, 

Qxi ( t  = F h  ( t  )&xi (L I 

Qyi (t I = F2y (t  )&yi ( L  I (10) 

Q +i ( t  = M+(t )&+i (L 

Here, F2 is the force applied at the reflector C. G .  

Thus, 

M + ( f )  = F h r y  + F'zYrz + M2+ (11) 

and M2+ 

represents the external moment applied at  the reflector C. G.  Also, the nonlineari- 

ties z2 can be expressed in terms of pure rigid body 'Inematic nonlinearity and 

the nonlinear coupling term between the rigid-body modzs and the flexible modes. 

The location of reflector C. G. is given by coordinates (rx ,r,, 

N 2  = A , ( & )  + A S ( % & ; L  (12) 

This equation can be further simplified in terms of Euler parameters by rela- 

tionships developed in Appendix I as 

& 2 = A g ( a ~ )  + A ~ ( s L ) ~  

where &is the Euler vector comprising all four Euler parameters. 

(13) 

From equations (3) and (4) and by defining A = - AzT Io-' A + A 3  , the 

following equations are obtained 
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It is assumed that control forces applied for vibrai. In suppression has negligi- 

ble effect on rotational maneuver of the spacecraft in developing equations (14) 

and (15). Also, I 3  represents 3x3 identity matrix in t h t x  equations. 

Subsvstems and State Variable Models 

The two dynamical subsystems considered for decentralized control are the 

dynamics of the slewing of the rigidized SCOLE assembly and the vibration 

dynamics of the flexible antenna. These subsystems are represented by subscripts I 

and 11 respectively for subsequent analysis. 

The following are the definitions of state variabk and control variables for 

subsystem I. 

The interconnecting variables from the second subsystem to reflect the cou- 

pling between the subsystems are defined as 

The following state equations are obtained for subsystem I using these 
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definitions 

+ 
0 

H 

0 

.- 

- -. 

Here,H =Io- ' [A2A-1A2TIo-1  + I 3 ] ,  

D =  

For the second subsystem which is the flexible appendage of the entire system, 

the first two flexible modes are considered and the corresponding state variables 

and control variables are defined as 
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Minimize J ( 3 1 i=1,2, ... *N 
w.r.t. 3 

(18) 

where 3 is the ni dimensional state vector of the ith subsystem, 3 is the 

corresponding mi dimensional control vector and& is tile ri dimensional vector of 

interconnection inputs from the other subsystem. Tht integer N represents the 

total number of subsystems and the scalar functional J !< defined by 

where L is the performance index at time t for i = 1,2,..*N 

subsystems. The functional J defined in equation (19) is to be minimized subject to 

the constraints which define the subsystem dynamics, i.e. 

x. (t )& (t ) & ( t )  I- I 

& ( t o ) = &  * i = 1,2 ..., N . 

Also, the minimum of J must satisfy the interconnection relationship 

The ODen-looD Hierarchical Control 

Using the method of Goal Coordination or infeasib-e method 115,201, we con- 

sider another problem which is obtained by maximizin: the dual function a k) 
with respect to h(t ( to \< t f t f  where 



.. 
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X J L L  

subject to constraints in equations (20) and (21). Here 

Xl 

- x =  

XN 

Also, &in equation (22) is a vector of Lagrange multipliers which is given as 

j = 1,2, ..., N 

Rewriting this functional as 

1 =1 

where, 
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and where hT ( 

into a form separable in the index i . 
Thus, 

,t ) has been refactored into th;. form XT (& ( 3 ,t ), i.e. 

Then by the fundamental theorem of strong Lagran ;e duality 1221 

Thus an alternative way of optimizing J is to maximize <P ( h 1 . 
From equation (261, for a given A( t , to < t  <tl  , the functional is 

separable into N independent minimization problems, the ith of which is given by 

subject to 

This leads to a two-level optimization structure where on the first level, for 

given the N independent minimization problems described in equations (30) and 

(31) are solved and on the second level, the h ( t  ( to < t  < t f  ) trajectory is 

improved by an optimization scheme like the steepest ascent method, i.e. from 

iteration j to j +1 



where 

V @  ( is the gradient of 0 ( a> , ai > 0 is the step lc:.lgth and dj is the steepest 

ascent search direction. At the optimum dj -t 0 and tht appropriate Lagrange mul- 

tipier, &. , is the optimum one. 

The development of this algorithm depends on tlle assertion Max Q( AJ = 

min J and this may not be valid for all nonlinear systems. Consequently, lineari- 

zation of , and linearized equations for fi may be required for constraints to be 

convex and convexity of the constraints is necessary to prove this assertion. 

Nevertheless, the method is attractive from the standpoint of simplicity and that 

the dual function is concave for this nonlinear case. This ensures that if the duality 

assertion is valid, the optimum obtained is the Global Optimum. 

On the first level, since equation (30) is to be mi-:limized subject to equation 

(311, the necessary conditions lead to a two point boundary value problem from 

which an open loop optimum control could be ca1culal.r 2. However, it is desirable 

to calculate a closed loop control and for this the quasilinearization approach can 

be utilized at level one for all subsystems. Thus an iterative scheme can be set up 

whereby an initial trajectory of b ( t  )* , to \<t < t f  is guessed at level two and 

provided to level one. At level one the two-point boundary value problems of the 

subsystems are solved by quasilinearization. The state and control trajectories of 

all the subsystems obtained at level one are sent to level two. The test for 

optimality based on equation (33) is conducted at ley el two and if this is not 

satisfied, equation (32) is used to obtain the new x ( t  fcr the next iteration. 

Subsvstem Closed LOOD Controllers 
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The closed loop controllers are obtained at the first level by solving the two- 

point boundary value problems of the subsystems utilizing the quasilinearization 

procedure. As noted in equations (30) and (31), the first level problem for the ith 

subsystem is 

For givenX(t , to <t <tf , 

subject to 

& =fi (a&& 1 ,  to \<t <tf 

& ( t o  I = &  . 
For this problem, the Hamiltonian Hi can be written as 

(31) 

For a given & the state and costate equations become 

with 

It is assumed here that using the equations (36) and (371, it is possible to 

obtain the control% and the interconnect variable vector& which is an explicit 
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function of a and a , i.e. 

3 =L& (&,a 1 

& =& (a,& ) 
(38) 

Using these relationships for & and in equations (35) and (361, the following 

equations are obtained 

& =Qi (&,a 1 ,  

2i.i =& (&,a 1 ,  

to < t  G t f  

to < t  G t f  

with the boundary conditions 

x& ( t o  >=& 

and from the transversality conditions 

a 

a uasilinearization Procedure 

(39) 

(40) 

(41) 

(42) 

The two-point boundary value problem of ith subsystem is given by equa- 

tions (39) and (40) subject to boundary conditions of equations (41) and (42). 

This problem is solved by quasilinearization technique as follows. 

equations (39) and (40) can be rewritten as 

Y ( t  I = +  (43 1 
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In the quasilinearization procedure, starting from an initial guessed trajectory 

for y = y-j (t 1 , successive linearizations are performed of equation (43) in such a 

way that the final linear equation for y solves equation (43) to an acceptable 

degree subject to boundary conditions (41) and (42) which could be expressed in a 

more general form as 

where A, , A, are 2n x n matrices. 

The linearized equation of (43) about a trajectory y = yj (t ) is obtained by 

Taylor series expansion as 

y = F  ( y ’ )  + J (1’) ( 1  - X I )  + 2 (46 1 

where J ( y j  ) is the Jacobian of E y (  t ) , to \<t <tl , at yj and 2 represents the 

contribution of the higher order terms. Neglecting these higher order terms, the fol- 

lowing linear equation is obtained 

I 1  

If the initial guessed trajectory yj while satisfying equations (44),(45) and 

(47) does not satisfy equation (431, then an iterative search can be utilized to 

obtain a better linearizing trajectory by various methods discussed in references 19, 

20, and 21. This iterative search is given by noting that equation (47) can be writ- 

ten by expanding individual equations (39) and (40) by Taylor series expansion 

about a known trajectory &j( t  ), ), t E r0 ,t,1 , and retaining terms of up to 

first order. The linearized reduced differential equations are 
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or, in the partitioned matrix form, 

and 

(53 1 
ai e - A I l ( t  )a 1 (t I - A >vi 1 (t I + a 

Ilr - 
8- A 21(? (t - h i  j (t  I + & - - 

are evaluated at a 1 (t 1, vi (t 1 and hence are known functions of time. - 
The method of complementary functions [241 can be incorporated with this 

linearization of the differential equations in the implementation of iterative search. 
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The method of complementary functions 1241 can be incorporated with this 

linearization of the differential equations in the implementation of iterative search. 

An initial guess, a', a', t E [ to ,  t f  1, is used to evaluate matrices in equa- 

tions (53) at the beginning of the first iteration. In the next step, n sets of solu- 

tions to the 2n homogeneous differential equations 

are generated by numerical integration. For ( j  +1) st iteration, these solutions are 

denoted by ', a '; an ', aH2; . . . . ; Hn , a Hn . The boundary conditions 

used in generating these solutions are 

a H 1 ( t o ) = Q ,  an'(?,)= [ l o o  ...O , IT 
aH2(to)=Q, aH2(t,)= 1010 ... 0 ] T ,  

& n " ( t o ) = Q ,  T p ( t , ) =  ( 0 0 0  ... 1 . ]I. 
Next, one particular solution at (j+l) denoted by & P  , a p ,  is generated by 

numerically integrating equation (52) from t o ,  to t f  , using the boundary condi- 

tions &P (to = & , a (to = 0. Then, the complete solution of equation (52) can 

be obtained by using the principle of superposition and is of the form 

where the values of c 1  , c 2  , . . . . , c, which make =('+'(tf ) = are to be 

determined. To find these values of c 1 , c 2 , . . . . , Cn , we let t = t f  in equation 
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(58) and write it as 

Here, c A[ c 1 c2 . . . . c, is unknown. Solving f o r c  yields I' 

It is important to note that the indicated matrix inversion in equation (60) 

has to exist in order to solve for c. Substituting this solution of c into equations 

(57) and (58) gives the ( j + l )  st trajectory. This completes one iteration of the 

quasilinearization algorithm and this trajectory can be further utilized to begin 

another iteration, if required. Generally, the iterative scheme is terminated by 

comparing the j th and j +1 st trajectories by calculating the norm shown in the 

following equation and comparing it with a preselected termination constatnt, p. 

Closed Loot3 Control 

In order to obtain the closed loop control, the solution of the linearized equa- 

tion (47) can be written as 

where 9 is the state transition matrix of the system in equation (47). Rewriting 

equation (62)  in terms of solutions of states and costates and replacing the integral 

terms by a (t 
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From equations (42) and (63)  

It is important to note here that 422-1 always exists since it is a principal 

minor of the state transition matrix. 

Substituting equation (65)  into equation (38)  

& =Q (X.,?) . (66 1 
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APPENDIX I 
The transformation that relates the orientation angles & to Euler parameters r 

is a nonlinear transformation. This transformation i:: developed for body-three 

angles representation in this zppendix and similar trax:fonnations can be derived 

for other three representations, namely space-three anples, space-two angles, and 

body-two angles. 

I 

O 3  = sin-' I) -2 ( € 1  € 2  - €3 €4 I 
cos in-' 2( e3el + c3c2 I 

(a> For she2 # 1 : 

. 

7r If -- <e2 <E,  then 
2 2 

If ( cos@ lcose 2> < 0, then 

If ( cos0 zcose 3) 2 0, then 

(A.4) 

If ( cosezcos03) <O, then 
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e 3  = T- sin-' rr -2 (€1 €2 - €3 €4 1 

cos in- 2( € 3 ~ 1  + ) 
(A.5) 

(b) For sine = f 1,  8 is a constant. For sine2 = 1, 8 = -. 7r However, if 
2 

sine = -1, then 8 = --. 97 For this case, if ( sine 'sine 2sine + cos0 3 ~ ~ ~ e  ) 2 0, 
2 

then 

e ,  = sin-' 2 ( E2E3 + E1E4 1 . I 
If ( sine lsine 2sine + cose scose ) < 0, then 

For this entire case, Q 3  = 0 . 
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Fip1r.e 1- Positiorl Vectors in Inertial Frame 
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F i p r e  2- Vectors in  Bodyfixed Frame 


